1
/
5

【TECH BLOG】#MIRU2022 参加レポート

こんにちは。ZOZO ResearchのResearcherの平川と古澤です。2022年7月25日(月)から7月28日(木)にかけて画像の認識・理解シンポジウムMIRU2022に参加しました。この記事では、MIRU2022でのZOZO Researchのメンバーの取り組みやMIRU2022の様子について報告します。

MIRU2022

MIRUとは、Meeting on Image Recognition and Understandingという画像の認識・理解についてのシンポジウムです。2022年の今回はアクリエひめじ(姫路市文化コンベンションセンター)においてオフラインとオンラインのハイブリッド形式で開催されました。数年ぶりに現地参加も可能ということで1243名の方々が参加されたそうです。ZOZO NEXTは、このMIRU2022にゴールドスポンサーとして協賛させていただきました。



企業展示




企業展示ブースでは、ZOZO Researchにおける取り組みについてポスターを用いて紹介しました。ZOZOの多角的なファッションサービスとそこから得られる情報資産を活用した研究事例について紹介させていただきました。大変うれしいことに多くの方々に興味を持っていただき、お話をさせていただくことができました。ブースまで足を運んでくださった皆さま、誠にありがとうございました。展示していたポスターはこちらです。



インタラクティブセッション

ZOZO Researchからはロングオーラル1件とインタラクティブセッション2件の計3件を発表しました。以下に、各研究のサマリーを示します。

[OL3B-3]条件付き集合変換を用いたファッションコーディネートの補完 (ロングオーラル)

中村 拓磨、斎藤 侑輝 (ZOZO Research)
ファッションコーディネート補完問題は、複数の衣服やアクセサリーの組み合わせからなるファッションコーディネートを推薦する技術を実現するための重要な課題として知られています。コーディネート補完問題は、完成したコーディネートに対する評価値計算を前提とする従来手法を用いる場合、補完候補アイテム集合から評価値が最大になるアイテムの組み合わせを探索する問題に帰着します[1][2]。しかしながら、補完候補アイテム集合の要素数が増大するにつれて、探索コストが増大するという課題があります。そこで、本研究ではコーディネート補完問題を指定の条件下における集合検索問題として定式化し、入力アイテム集合と補完候補アイテム集合の属性を反映した特徴量を生成可能なモデルとその学習手法を提案しました。提案手法は指定の条件下で入力アイテムの集合と相補的なアイテム集合を直接的に予測可能であるため、探索空間の増大に伴い推論時の計算量が増大する問題を原理的に解決するアプローチと言えます。実データを用いた性能比較実験では提案手法が入力アイテム集合と相補的なアイテム集合を予測できていること及び出力集合の要素の属性情報を制御可能であることを示しました。
[1] Cucurull, Guillem, Perouz Taslakian, and David Vazquez. "Context-aware visual compatibility prediction." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
[2] Saito, Y., Nakamura, T., Hachiya, H. and Fukumizu, K.: Exchangeable Deep Neural Networks for Set-to-Set Matching and Learning, ECCV2020: Proceedings, Part XVII, p. 626‒646. 2020.



おまけ

学会の合間に明石焼き風たこ焼きを食べに行きました。



ご満悦。



続きはこちら

株式会社ZOZO's job postings

Weekly ranking

Show other rankings
Invitation from 株式会社ZOZO
If this story triggered your interest, have a chat with the team?